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Abstract: A new hyperbolic shear deformation theory for bending of deep beams, in which number of variables is same as that in the 

hyperbolic shear deformation theory, is developed. The noteworthy feature of theory is that the transverse shear stresses can be 

obtained directly from the use of constitutive relations with efficacy, satisfying the shear stress free condition on the top and bottom 

surfaces of the beam. Hence, the theory obviates the need of shear correction factor. The fixed-fixed isotropic beam subjected to 

varying load is examined using the present theory .Governing differential equation and boundary conditions are obtained by using 

the principle of virtual work. Results obtained are discussed critically with those of other theories. 
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I. INTRODUCTION 

1.1 Introduction 

It is well-known that elementary theory of bending of beam based on Euler-Bernoulli hypothesis disregards the effects of the shear 

deformation and stress concentration. The theory is suitable for slender beams and is not suitable for thick or deep beams since it is 

based on the assumption that the sections normal to neutral axis before bending remain so during bending and after bending, implying 

that the transverse shear strain is zero. Since theory neglects the transverse shear deformation, it underestimates deflections in case of 

thick beams where shear deformation effects are significant. Thick beams and plates, either isotropic or anisotropic, basically form 

two-and three dimensional problems of elasticity theory. Reduction of these problems to the corresponding one- and two-dimensional 

approximate problems for their analysis has always been the main objective of research workers. As a result, numerous refined 

theories of beams and plates have been formulated in last three decades which approximate the three dimensional solutions with 
reasonable accuracy. 

1.2 Literature survey 

Rayleigh [9] and Timoshenko [10] were the pioneer investigators to include refined effects such as rotatory inertia and shear 

deformation in the beam theory. Timoshenko showed that the effect of transverse shear is much greater than that of rotatory inertia 

on the response of transverse vibration of prismatic bars. This theory is now widely referred to as Timoshenko beam theory or first 

order shear deformation theory (FSDT) in the literature. The first order shear deformation theory (FSDT) of Timoshenko [11] 

includes refined effects .such as the rotatory inertia and shear deformation in the beam theory. Timoshenko showed that the effect of 

transverse shear is much greater than that of rotatory inertia on the response of transverse vibration of prismatic bars. In this theory 

transverse shear strain distribution is assumed to be constant through the beam thickness and thus requires shear correction factor to 

appropriately represent the strain energy of deformation. Cowper [3] has given refined expression for the shear correction factor for 

different cross-sections of the beam. 

 Heyliger and Reddy [6] presented higher order shear deformation theories for the static and free vibration The theories based on 

trigonometric and hyperbolic functions to represent the shear de-formation effects through the thickness is the another class of refined 

theories. However, with these theories shear stress free boundary conditions are not satisfied at top and bottom surfaces of the beam. 

This discrepancy is removed by Ghugal and Shimpi [4] and developed a variationally consistent refined trigonometric shear 

deformation theory for flexure and free vibration of thick isotropic beams. Ghugal and Sharma [5] developed the variationally 

consistent hyperbolic shear deformation theory for flexure analysis of thick beams and obtained the displacements, stresses and 

fundamental frequencies of flexure mode and thickness shear modes from free vibration of simply supported beams. In this paper, a 

variationally consistent hyperbolic shear deformation theory previously developed by Ghugal and Sharma [5] for thick beams is used 

to obtain the general bending solutions for thick isotropic beams. The theory is applied to uniform isotropic solid beams of 
rectangular cross-section for static flexure with various boundary and loading conditions. A refined theory containing the 

trigonometric sine and cosine functions in thickness coordinate, in the displacement field is termed here as trigonometric shear 
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deformation theory (TSDT). The trigonometric functions involving thickness coordinate are associated with transverse shear 
deformation effects and the shear stress distribution through the thickness of the beam. This is another class of refined theories in 

which number of displacement variables in the simplest form can be same as those in FSDT the results are compared with those of 

elementary, refined beam theory to verify the credibility of the present shear deformation theory. 

In this paper development of theory and its application to thick fixed beam is presented. 

 

II. DEVELOPMENT OF THEORY 

The beam under consideration as shown in Figure1 occupies in 0 x y z   Cartesian coordinate system the region: 

                                  
0 ; 0 ;

2 2

h h
x L y b z      

                                                                                                  (1)
 

where x, y, z are Cartesian coordinates, L and b are the length and width of beam in the x and y directions respectively, and h is the 

thickness of the beam in the z-direction. The beam is made up of homogeneous, linearly elastic isotropic material.  

 

  

 

 

 

 Fig. 1 Beam under bending in x-z plane 

2.1 The displacement field 

The displacement field of the present beam theory is of the form:

                                                  ( , ) cosh sinh
2
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                                                                                           (2) 

where u the axial displacement in x direction and w is the transverse displacement in z direction of the beam. The sinusoidal function 

is assigned according to the shear stress distribution through the thickness of the beam. The function   represents rotation of the beam 

at neutral axis, which is an unknown function to be determined. The normal and shear strains obtained within the framework of linear 

theory of elasticity using displacement field given by Eqn. (1) are as follows. 

                                         Shear strain: coszx

u dw z

z dx h


 


  
                                                                                                 (3)

 

The stress-strain relationships used are as follows:  

                                                                 
2

2
= sinx x

d w Eh z d
E Ez

dx h dx
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2.2 Governing equations and boundary conditions 

Using the expressions for strains and stresses (2) through (4) and using the principle of virtual work, variationally consistent governing 

differential equations and boundary conditions for the beam under consideration can be obtained. The principle of virtual work when 

applied to the beam leads to: 

       
 

.
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( ) 0x x zx zx
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where the symbol  denotes the variational operator. Employing Green’s theorem in Eqn. (4) successively, we obtain the coupled 

Euler-Lagrange equations which are the governing differential equations and associated boundary conditions of the beam. The 

governing differential equations obtained are as follows: 

 
4 3

4 3 3

24d w d
EI EI q x

dx dx




 

                                                                                                                                                                             (6) 

3 2
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d w d GA
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                                                                                                                                                         (7)
 

The associated consistent natural boundary condition obtained is of following form:  

At the ends x = 0 and x = L
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2.3 The general solution of governing equilibrium equations of the Beam  

The general solution for transverse displacement w(x) and warping function (x) is obtained using Eqns. (6) and (7) using method of 

solution of linear differential equations with constant coefficients. Integrating and rearranging the first governing Eqn. (6), we obtain 

the following equation  

 

 3 2

3 3 2

24 Q xd w d

EIdx dx




                                                                                                                             (11) 

where Q(x) is the generalized shear force for beam and it is given by   1

0

x

Q x qdx C  .  

Now the second governing Eqn. (7) is rearranged in the following form:      

                                                   
3 2

3 24

d w d
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A single equation in terms of  is now obtained using Eqns. (11) and (12) as:  
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where constants ,   and   in Eqns. (11) and (12) are as follows  
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The general solution of Eqn. (13) is as follows:                                      
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The equation of transverse displacement w(x) is obtained by substituting the expression of  (x) in Eqn. (12) and then integrating it 

thrice with respect to x. The general solution for w(x) is obtained as follows: 
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                                             (15)  

where 1 2 3 4 5 6, , , , and C C C C C C are arbitrary constants and can be obtained by imposing boundary conditions of beam.  
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III. ILLUSTRATIVE EXAMPLE 

In order to prove the efficacy of the present theory, the following numerical examples are considered. The material properties for 

beam used are: E = 210 GPa, μ = 0.3 and  = 7800 kg/m3, where E is the Young’s modulus,   is the density, and μ is the Poisson’s 

ratio of beam material. The kinematic and static boundary conditions associated with various beam bending problems depending upon 

type of supports  

Fixed end:

 
0

dw
w

dx
   at x = 0, L 

 

 

 

 

 

 

                                                           

                                                                      Fig. 2: A fixed beam with varying load  

General expressions obtained are as follows:                       

2 25 3 2 2 2 2 2 3 2

0 0 0

5 3 2 2 2 2 2 3 2

0 0 0

( )
3 sinh cosh 1 cosh 1 cosh 1 1 1 1

3 2 5
2 sinh sinh 2 3 2

w x
A A Bx x x E h x x x x E h x x E h x x

C G L L L L C G L L A GL L L L L L L L L

   

    


       
            

    
 

 
2 2 2

0

2 2 2

0

23 4 2 2

0 0 0 2
3 4 2 2

0 0 0 2

2

cosh sinh 1

sinh cosh
1 2 9 3 1 1 1 3

cosh sinh 7
2 5 10 20 2 10 2 20

3

x

Ax x E h E h
u x x

L GL L L

x x
A B Az L x x E h x x z z E L

x
h C G C L A G L h h C G hh L L L

L

z L

h h

 



 
 


    

 

 
                                       

 

  

2

0

2

0

23

2 2 2
3 0 0 0

2 2 2

0 0 0

2

22

2

2

5

9 3 Lcosh sinh2 1 1 1 3
5 20 2 1 cosh sinh 20

2 10 2 20
L sinh cosh 3

6
1

4 1
8

EE

zx

x E h

L C G L

Ax x L x
A B AE h E h x z z E

L x
C G A G L h h C GL L

x x L

x

Lz L

hh


   
 


  





                                        


 

 
 

 

2

2

2 2
0

2
0 2 20

2
02 2 0

2 2 2
0

39 1
4 1 cosh

20 8 2 3 20
sinh cosh

20 3cosh 1 1 1
L cosh cosh

sinh 5 2

cosh
2

CR

zx

E h

G L

A z

C h A E h
L x x

C G Lx B E h z

x A G L h



  
  


  




             
                                         


 



2

0

2

0

3 7
cosh sinh cosh

20 3

Az L x
x x

h C h L


 

    
      

     

 

IV. RESULTS AND DISCUSSION 

The results for maximum transverse displacement and maximum transverse shear stresses are presented in the following non 

dimensional form for the purpose of presenting the results in this paper, 
3
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TABLE-I 

NON-DIMENSIONAL AXIAL DISPLACEMENT ( u ) AT (X = 0.75L, Z = H/2), TRANSVERSE DEFLECTION ( w ) AT (X = 

0.75L, Z=0.0) AXIAL STRESS ( x ) AT (X = 0, Z = H/2) AND MAXIMUM TRANSVERSE SHEARS STRESSES 
CR

zx

(X=0.01L, Z =0.0) and
 

EE

zx  at (x =0.01L, z =0.0) of the Fixed Beam Subjected to Varying Load for Aspect Ratio 4 

 

Source Model u  

 

x                

CR

zx


 

Present NHPSDT -2.3243 4.5932 -0.7303 3.2118 

Ghugal and Sharma [70] [71] HPSDT -2.2480 6.5984 -1.1052 0.5229 

Dahake TSDT -2.2688 5.1300 -0.7546 0.4426 

Timoshenko [11] FSDT -1.5375 3.2000 0.9000 0.0962 

Bernoulli-Euler ETB -1.5375 3.2000 0.9000 - 
 

 

 

 

      Fig.  4(a): Variation of maximum axial displacement (u)                      Fig. 4 (b): Variation of maximum axial stress (σx)  

 

EE

zx

-3 -2 -1 0 1 2 3

-0.50

-0.25

0.00

0.25

0.50

Present NHPSDT

HPSDT

TSDT

FSDT

ETB

-10 -8 -6 -4 -2 0 2 4 6 8 10

-0.50

-0.25

0.00

0.25

0.50

Present NHPSDT

HPSDT

TSDT

FSDT

ETB

u  

Z/h Z/h 

 

x
 

http://www.ijergs.org/


International Journal of Engineering Research and General Science Volume 2, Issue 5, August-September, 2014                                                                                   
ISSN 2091-2730 

 

214                                                                                                   www.ijergs.org  
 

   

                                                                                                                                                                                                  
 

                                                       Fig. 4 (c): Variation of transverse shear stress (τzx)  
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Fig. 4 (d): Variation of maximum transverse displacement (w) of fixed beam at (x=0.75L, z = 0) when subjected to varying load with 

aspect ratio AR. 
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V. DISCUSSION OF RESULTS 

The results obtained by present new hyperbolic shear deformation theory are compared with those of elementary theory of beam 

bending (ETB), FSDT of Timoshenko, HPSDT of Ghugal and Sharma and TSDT of Dahake and Ghugal. It is to be noted that the 

exact results from theory of elasticity are not available for the problems analyzed in this paper. The comparison of results of maximum 

non-dimensional transverse displacement and shear stresses for the aspect ratios of 4 and 10 is presented in Table-I for beam subjected 

to varying load. Among the results of all the other theories, the values of present theory are in excellent agreement with the values of 

other refined theories for aspect ratio 4 except those of classical beam theory (ETB) and FSDT of Timoshenko.  

 

VI. CONCLUSIONS 
The variationally consistent theoretical formulation of the theory with general solution technique of governing differential equations is 
presented. The general solutions for beam with varying load are obtained in case of thick fixed beam. The displacements and shear 

stresses obtained by present theory are in excellent agreement with those of other equivalent refined and higher order theories. The 

present theory yields the realistic variation of transverse displacement through and shear stresses the thickness of beam. Thus the 

validity of the present theory is established. 
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